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Transport in Macroscopically Inhomogeneous 
Materials 1 

G. Grimvall  2 and M. S6derberg 2 

We consider electrical and thermal transport in macroscopically inhomogeneous 
materials, when the two components forming a mixture have very different con- 
ductance properties. Because of their complexity, such systems are sometimes 
modeled by resistor networks. It is shown that the most natural models violate 
the Hashin-Shtrikman bounds to the effective conductivity of continuous com- 
posite materials. The distribution of the Joule heat between the phases, in the 
case of electrical conductance, is also largely erroneous. Thus, better estimates of 
conductance properties are obtained by disregarding detailed information about 
the phase geometry and instead using general methods for continuous materials, 
valid for a wide class of geometries. 

KEY WORDS: composite materials; electrical conduction; resistor networks; 
thermal conduction. 

1. I N T R O D U C T I O N  

The effective conductivity of a macroscopically inhomogeneous two-phase 
material depends on the phase conductivities and on the concentration and 
geometrical distribution of the phases. However, it is usually difficult to 
evaluate the effective conductivity exactly, and approximate methods are 
required. Discrete models, in which few resistors in special configurations 
represent each grain, provide a drastic simplification. 

The conductance properties of resistor networks, in which two 
resistors, R1 and R2, a re  distributed according to certain prescriptions, 
have been thoroughly studied from the point of view of critical behavior 
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and percolation properties when R~/Rz is zero or infinite [-1, 2]. Yet little is 
known about the applicability of discrete resistor models to real composite 
materials. It is the purpose of this paper to discuss that question. In a 
previous paper [3], dealing only with two dimensions, it was shown that 
natural discretizations violate certain absolute bounds to the overall con- 
ductivity of two-phase materials. The same behavior, illustrated by a 
specific example, is shown here to arise in three dimensions. Our presen- 
tation is in terms of the electrical conductivity, but it is relevant also for 
thermal conduction. 

2. DISCRETIZATION MODELS 

Consider a grain of a two-dimensional two-phase material. A 
reasonable description of the grain requires at least as many resistors as the 
number of neighboring grains (neglecting point-contacts). Figure 1 shows 
four such discretizations of a square grain. We call the resistor models in 
Figs. la, b, c, and d the cross, side, corner, and mid models, respectively. 
They are easily generalized to three dimensions. For instance, Fig. 2 shows 
the cross model of a cubic grain. The side model has 12 equal resistors, 
along the sides of a cube. The corner model has eight resistors, each one 
connecting a cube corner with the cube center. The mid model has 12 
resistors, connecting the midpoints of adjacent cube sides. The number of 
resistors in each grain does not depend on the grain size. The magnitude of 
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Fig. 1. The cross (a), side (b), corner (c), and mid 
(d) resistor models of a square grain. 
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Fig. 2. The three-dimensional analogue of the two- 
dimensional cross model (Fig. la). 

the resistors in a grain all have the value R~ or  R2,  depending on which 
phase they represent. The surface (or volume) fractions of the two phases 
are cl and c2 ( =  1 -c~ ) .  Hence, cl measures the total number of resistors 
R1. A model like this keeps the number of parameters at a minimum, but it 
still contains information about the geometrical arrangement of the grains 
and their conductivities. Further details on discretization models are found 
in our treatment of the two-dimensional case [3, 4]. 

3. GENERAL RESULTS FOR TWO-PHASE MATERIALS 

We now recapitulate some known results for three-dimensional two- 
phase materials. We have in mind materials which are isotropic and 
homogeneous, on a length scale larger than that characteristic of the 
grains. Hashin and Shtrikman [-5] used a variational method to show that 
the overall effective conductivity, (Te, is bounded as follows ((72 > (71):  

(7~ + c2[1/((72-(7~) + c~/(3(7~) ] '<(7e<(72+ C~[1/((7l--(72) + C2/(3(72) 3 -1 
(1) 

Bruggeman [6] ,  Landauer [7],  and others derived an effective medium 
theory for (7e- The result is 

c1((71 - (7~)/((71 + 2(7r = c2((7r - (7~)/((72 + 2(7r (2) 

Schulgasser [8]  proved that for cell materials (which includes our example 
in Section 4) with cl = c2 = 0.5, 

(7~> ((7~(7~)~ (3) 
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Table I. The Effective Conductivity of Stacked Cubes, with 0-2/0.1>~ 1 

Exact result 
Lower Hashin-Shtrikman bound 
Upper Hashin-Shtrikman bound 
Effective medium theory 
Lower Schulgasser bound 
Discretized model (side, corner) 
Discretized model (cross, mid) 

2(0.10.2)12 
40-1 

(2/5) ~2 
0"2/4 l 

0-2/2 
20-1 

4. AN EXAMPLE: STACKED CUBES 

A specific example is now used to illustrate certain features of dis- 
cretized models. Consider the three-dimensional analogue of a regular 
checkerboard, i.e., a material consisting of cubic grains of two phases, 
stacked in alternating sequencies. This system is one of the very few for 
which the conductivity is known exactly. When 0"1/0"2> 1 (or ~ 1), one has 
0"e-= 2(0"10"2)~ [9"]. Table I compares this result with the Hashin-Shtrikman 
bounds, the Bruggeman-Landauer effective medium theory, and 
Sehulgasser's inequality, all for 0"2/0"~ >> 1. One should note that a system of 
cubic symmetry, such as our example of stacked cubes, has an isotropic 
overall conductivity, and the results in Section 3, for isotropic systems, are 
applicable [ 10]. 

It is not very difficult to calculate the effective conductivity in the four 
discretization models discussed above. The result is a series or parallel 
coupling of Rx and R2,  which can be written 

and 

0-e = (0"1 -~- 0"2)/2 (4 )  

0-e = 20"10"2/(0"1 q- 0"2) (5)  

for the side and corner [Eq. (4)] and the cross and mid [Eq. (5)] models. 
Here we have normalized R1 and R 2 so  that all four discretizations give the 

Table II. The Effective Conductivity of Stacked Cubes, with 0.ff0-~ = 10 

Lower Hashin-Shtrikman bound 
Upper Hashin-Shtrikman bound 
Lower Schulgasser bound 
Discretized model (side, corner) 
Discretized model (cross, mid) 

2.8 0-1 
4.706 0-1 
3.161 0-1 

5.5 a 1 
1.818 0-1 
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same conductivity when al  = a 2  (i.e., when R1 =R2).  Table II  gives the 
effective conductivities as obtained from Eqs. (1), (4), and (5), when 
a2/al = 10. We note that ae in all four discretization models falls outside 
the Hash imSht r ikman  bounds. 

Let r = Q J Q 2  be the ratio of the total Joule heat in phase 1 and 
phase 2, when an electric current flows through a composite material. In 
the case of stacked cubes with a2/a~> 1, r =  1 [8].  Our  discretization 
models of the same system are easily found to yield r = alia2 for the corner 
and side models and r = o-2/o- 1 for the cross and mid models. 

5. D I S C U S S I O N  AND C O N C L U S I O N S  

The effective conductivity of a composite material which, in a 
statistical sense, is isotropic and homogeneous, always falls within the 
Hashin-Shtr ikman bounds, irrespective of details in the geometrical dis- 
tribution of the phases. If the phase distribution is known, one might try to 
include that information through a resistor network model. Our example 
shows that such a procedure can yield results which violate the Hashin-  
Shtrikman bounds. Then the attempt to include the phase geometry leads to 
an estimate of cre which is worse than an estimate based only on the 
amounts c i of the phases, without regard to the detailed phase geometry. 
We have also seen that the ratio of the total Joule heat in the two phases is 
largely erroneous, if estimated by a discretized model. 
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